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ABSTRACT

The main disadvantages of independent checkpointing are the possible domino effect and

the associated storage space overhead for maintaining multiple checkpoints. In most previous

work, it has been assumed that only the checkpoints older than the current global recovery

line can be discarded. In this paper, we generalize the notion of recovery line to potential

recovery line. Only the checkpoints belonging to at least one of the potential recovery lines

can not be discarded. By using the model of maximum-sized antichains on a partially ordered

set, an efficient algorithm is developed for finding all non-discardable checkpoints and we

show that the number of non-discardable checkpoints can not exceed N(N + 1)/2 where N
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is the number of processors. Communication-trace-driven simulation for several hypercube

programs is performed to show the benifit of the proposed algorithm for real applications.

Key words: fault tolerance, message-passing systems, independent checkpointing, recovery

lines, checkpoint space reclamation



I INTRODUCTION

Numerous checkpointing and rollback recovery techniques have been proposed in the lit-

erature for parallel systems. They can be classified into two categories. Coordinated check-

pointing schemes synchronize computation with checkpointing by coordinating processors

during a checkpointing session in order to maintain a consistent set of checkpoints [1, 2, 3].

Each processor only keeps the most recent checkpoint and rollback propagation is avoided

at the cost of potentially significant performance degradation during normal execution. In-

dependent checkpointing schemes replace the above synchronization by dependency tracking

and possibly message logging [4, 5, 6, 7] in order to preserve process autonomy. Possible roll-

back propagation in case of a fault is handled by reconstruction of a consistent system state

based on the dependency information. Lower run-time overhead during normal execution is

achieved by maintaining multiple checkpoints and allowing slower recovery.

This paper considers the independent checkpointing schemes. Most research on this

subject has concentrated on algorithms for finding the latest consistent set of checkpoints,

i.e., the recovery line, during rollback recovery. The same algorithms can be applied to

the set of existing checkpoints during normal execution to find the current global recovery

line. All the checkpoints older than the current global recovery line then become obsolete

checkpoints and therefore can be discarded. When the domino effect [3, 8] occurs, large

number of non-obsolete checkpoints have to be kept on the stable storage and result in large

space overhead.

Our approach is based on the observation that many non-obsolete checkpoints can also be

discarded because they will never become members of any future recovery line. The notion of

recovery line is generalized to potential recovery line. A checkpoint is non-discardable if and

only if it belongs to at least one of the potential recovery lines. By modeling a recovery line

as the maximum maximum-sized antichain on a partially ordered set, an efficient algorithm



is presentedfor finding the union of all potential recoverylines, which gives the set of non-

discardablecheckpoints. A maximum on the sizeof this set is also derived to show that even

when domino effect persists during program execution, the space overhead for maintaining

multiple checkpoints will not grow without limit.

The outline of the paper is as follows. Section II describes the system model; background

materials are introduced in Section III; Section IV formulates the problem; Section V gives

the necessary and sufficient conditions for a checkpoint to be non-discardable; the check-

point space reclamation algorithm is developed in Section VI; the maximum number of

non-discardable checkpoints is derived in Section VII; Section VIII extends the results to

recovery protocols using virtual checkpoints and Section IX is the conclusion.

II SYSTEM MODEL

A Checkpointing and Rollback Recovery

The system model considered in this paper is a message-passing system consisting of a

number of concurrent processes for which all process communication is through message

passing. Processes are assumed to run on fail-stop processors [9] and each processor is

considered an individual recovery unit.

During normal execution, the state of each processor is occasionally saved as a checkpoint

on stable storage and can be reloaded for rollback recovery in case of a detected error. Let

CPik denote the kth checkpoint of processor Pi with k >_ 0 and 0 < i _< N - 1, where

N is the number of processors. A checkpoint interval is defined to be the time between

two consecutive checkpoints on the same processor. Each processor takes its checkpoint

independently, i.e. without synchronizing with any other processors, and includes in each



checkpoint the communication information containing:

1. its own processor number and checkpoint number and

2. the sender's processor number and checkpoint number tagged on each message it has

received during the previous checkpoint interval.

A centralized checkpoint space reclamation algorithm can be invoked by any processor occa-

sionally to collect the global communication information, construct the dependency graph,

determine the set of obsolete checkpoints and reclaim the storage space.

We consider two different rollback recovery procedures, Schemes A and B. Scheme A

basically, follows the algorithm described by Bhargava and Liar [6] and is summarized as

follows. When a processor Pi detects an error, it starts a two-phase centralized recovery

procedure. First, a rollback-initiating message is sent to every other processor to request the

up-to-date communication information. Each surviving processor takes a virtual checkpoint

upon receiving the rollback-initiating message so that the communication information dur-

ing the most recent checkpoint interval is also collected. After receiving the responses, pi

constructs the complete dependency graph and executes the rollback propagation algorithm

(described in the next section) to determine the recovery line. A rollback-request message

is then sent to each processor. The message requests each involved processor to reload the

checkpoint in the recovery line and restart.

In this paper, Scheme B is proposed as a variation of Scheme A. Instead of a virtual

checkpoint, a real checkpoint is taken by each surviving processor upon receiving the rollback-

initiating message. The recovery line then consists of all real checkpoints. This modified

scheme takes advantage of the coordination needed for recovery and can often force the

current recovery line to move forward. Each processor can then discard all checkpoints

except the one belonging to this recovery line. Rollback propagation for possible recovery in



the future is therefore bounded by this new recovery line.

B Consistency of Checkpoints

There are two situations concerning the consistency between two checkpoints. In Fig. 1 (a), if

pi and pj restart from the checkpoints CPi_ and CPj,,_ respectively, the message rn is recorded

a.s "received but not yet sent". In a general model without the assumption of deterministic

execution, message rn is not guaranteed to be re-sent during reexecution. CPik and CPjm

are thus inconsistent.

p/ P/ .

CPjm CPj(m+ I ) CPjm

(a) £0)

Figure 1: (a) Inconsistent checkpoints; (b) consistent checkpoints.

Fig. l(b) illustrates the second situation. The message m is recorded as "sent but not yet

received" according to the system state containing CPik and CPj,_. By defining the state of

the channels to be the set of messages sent but not yet received, it has been proved [2, 10]

that checkpoints like CPik and CPj,_ can be considered consistent if the corresponding state

of the channels is also recorded. In Koo and Toueg's paper [3], such state was assumed to

be recorded at the sender side in the form of lost messages and the set of messages was

guaranteed to be delivered reliably by some end-to-end transmission protocol. When it is

impossible or difficult to implement the above scheme, pessimistic message logging [11, 12, 13]

can ensure the state of the channels is properly recorded at the receiving end. As a result,

we consider the situation in Fig. l(b) as consistent.



III PRELIMINARIES

A Partially Ordered Set and Checkpoint Graph

In a message-passing system, an event a happens before event b [14] if and only if

1. a and b are events in the same processor, and a occurs before b; or

2. a is the sending of a message by one processor and b is the receiving of the same

message by another processor; or

3. a happens before c and c happens before b.

The set of events with the "happens before" relation forms a partially ordered set, or poset

[14]. When dealing with the problem of finding a consistent set of checkpoints, we only

consider the induced subposet [15] P = (C, <), where C is the set of all checkpoints and < is

the "happens before" relation.

A checkpoint graph (CPG), of which the transitive closure is the poset P, is a directed

acyclic graph constructed as follows [4]. Each vertex on the checkpoint graph represents a

checkpoint. A directed edge exists from vertex CPj,_ to vertex CPik if j = i and k = m + 1,

or j _ i and there exists a message sent by processor pj between CPjm and CPj(m+I) and

received by processor pl between CP;(k-t) and CPik. Fig. 2 gives an example of CPG with

its corresponding communication pattern.

Most of the ideas in this paper will be illustrated by the better visualized CPG instead

of the more abstract poset. An element a in a poset is maximal (minimal} if there does

not exist any element b such that a < b (b < a); correspondingly, a vertex in a CPG will

be referred as maximal (minimal) if it has no outgoing (incoming) edge. Also, the following

5
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Figure 2: (a) The checkpoint and communication pattern; (b) the corresponding checkpoint

graph

terminologies will be used interchangeably: a < b, a is "smaller than" b, b is "greater than"

a, a can "strictly reach" b and b is "strictly reachable from" a.

B Maximum-Sized Antichain and Recovery Line

A partial ordering of a set S is linear if for every two elements a and b in S, either a < b or

b < a [15]. In a poset, a subset whose elements are linearly ordered is called a chain and a

set of elements, no two of which are comparable, is called an antichain. In particular, a set

of any number of maximal (minimal) elements clearly forms an antichain. The antichains

with the largest number of elements are called the rnazimum-sized antiehains or M-chains

for short. Let A(Q) denote the set of antichains on a poset Q and, for A, B E A(Q), define

A _ B if and only if for all a E A there exists b E B such that a < b. [16]. Also let .M(Q)

denote the set of maximum-sized antichains. We then have the following properties.

LEMMA 1 (I) (A(Q), -<) forms a poset;

(2) (.A(Q), -'<) is a lattice and its subposet (fl4(Q), __) is a sublattice,"

(3) For M,, M2 E .A/t(Q), the join (least upper bound) Mx V M2 = max(Mx L) M2) and the



meet (greatest lower bound) M1 A M2 = min(M1 U M2), where max(S) denote the set of

maximal elements in $ and rain(S) is similarly defined [17, 16].

Since (A4(Q), _) is a finite lattice, there must exist a unique maximum member M*(Q),

called the maximum maximum-sized antichain or MM-chain, such that M _ M'(Q) for

every M E A4 (Q).

LEMMA 2 For any M e fld(Q), there must not exist any a E M*(Q) such that a < b for

bEM.

Proof. Suppose there exist such a E M*(Q) and b E M. M "< M*(Q) implies there exists

c E M*(Q) such that b < c. Together with a < b, this leads to a < c, contradicting the fact

that M*(Q) is an antichain.

In this paper, we define a global checkpoint to be a set of checkpoints, one from each

processor. Based on the discussion on consistency in the previous section, a consistent global

checkpoint is a set of checkpoints, one from each processor and no two of which are comparable

through the "happens before" relation. A recovery line refers to the latest consistent global

checkpoint. Because one special feature of the poset P = (C, <) is that there always

exists a natural chain decomposition Co, C1, ..., CN-1 where C_ is the set of all checkpoints of

processor pi, the size d(P) of the M-chains cannot be greater than N. Furthermore, because

the first checkpoint of every processor must be minimal and the set of such checkpoints

always forms an antichain of size N, d(P) is equal to N and each M-chain will consist of N

elements, one from each C_. It becomes clear that each M-chain is equivalent to a consistent

global checkpoint. Since it is always desirable to rollback to the most recent consistent global

checkpoint in order to minimize the recovery cost, Lemma 1 guarantees the existence and

uniqueness of such a recovery line, i.e., the MM-chain.

7



C Ideal, Filter and The Reachable Set

Given a poset P, if 2" is a set of elements of P with the property

a E Z and b <_ a ==_ b E 2",

Z is called an ideal or a down-set of P. Similarly, a filter or an up-set, 9v, of P is a set of

elements such that if a E .T" and a _< b, then b E _-.

For an antichain A in P, define

Z(A) = {x E P : x <_ a for some a e A}

.T'(A) = {x E P : x < a for some a E A}.

Then Z(A) is an ideal [16] and ._'(A) is a filter.

LEMMA 3 A and B are antichains, then [16]

(I)

2"(A) C_2"(B) ¢=_ A _ B;

(e)

9Z'(A) C .T'(B) .¢==_ B _ A.

In terms of the CPG, the set of vertices which can reach any vertex in an antichain A is

equal to Z(A) and the set of vertices reachable from any vertex in A is equal to 9r(A).

D The Rollback Propagation Algorithm

The algorithm for finding the recovery line will form the basis of our checkpoint space

reclamation algorithm. The problem of finding the MM-chain in a general poset can be

transformed into that of finding a maximum matching on a bipartite graph [18]. For the



poset P = (C, <) in our problem, a simpler rollback propagation algorithm, shown in Fig. 3,

has been proposed [4] and applied to the CPG.

/* CP stands for checkpoint */

/* Initially, all the CPs are unmarked */

include the latest CP of each processor in the root set;

mark all CPs strictly reachable from any CP in the root set;

while (at least one CP in the root set is marked) {

replace each marked CP in the root set by the latest unmarked CP on the

same processor;

mark all CPs strictly reachable from any CP in the root set;

}
the root set is the recovery line.

Figure 3: The Rollback Propagation Algorithm

The complexity of the algorithm is linear in the number of edges because each edge can

be removed after it is used to reach some vertex and therefore visited at most once.

IV PROBLEM FORMULATION

We first define the potential recovery line of a given checkpoint graph G as the recovery

line of any checkpoint graph G _ which can possibly evolve from G during program execution

in the future. Since the purpose of keeping checkpoints is for possible future recovery, a

checkpoint is discardable if and only if it does not belong to any potential recovery line.

Being older than the current global recovery line is simply a sufficient condition for being a

discardable checkpoint but not a necessary condition. We will show there exist checkpoints

not older than the global recovery line yet discardable.

9



SchemeA and B for rollback recovery,asdescribedin SectionII, presentdifferent levels

of difficulty for the problemof identifying discardablecheckpoints. In SchemeB, a recovery

line exists after each recovery such that all the older checkpoints can be discarded and

all the newer checkpoints are invalidated by the rollback (Fig. 4(a) and (c)). Therefore,

each recovery will start a new checkpoint graph and we only have to consider the potential

recovery lines of the existing graph up to next recovery. Scheme A can be viewed as a more

general case of Scheme B. Some checkpoints will be invalidated due to the rollback and result

in a checkpoint graph which is a subgraph of the one before recovery (Fig. 4(a) and (b)).

A checkpoint is discardable only when it will never belong to any recovery line no matter

how many times the recovery occurs. We first consider Scheme B in the following sections

and then show in Section VIII that the same necessary and sufficient conditions are also

applicable to Scheme A.

Although the execution time for a normal program is finite, the possibility of augmenting

the existing CPG by adding new vertices is enormous because the communication pattern

is in general unpredictable. By recognizing the following rules for adding new vertices to a

checkpoint graph, we are able to reduce the almost infinite number of situations to finite

cases for the problem of identifying minimum number of non-discardable checkpoints. For

each new vertex CPik,

Rule 1: CPik must have an incoming edge from CPi(k-1) except for the first vertex on each

chain which has no incoming edge;

Rule 2: CPik can have incoming edges from arbitrary existing vertices. But it can not have

any outgoing edge to any existing vertex.

Note that a checkpoint CPik that happens before CPjm may not be collected before

CPi,n. However, such a situation can be detected by the communication information. If

10



(a)
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(b) (c)

Figure 4: Checkpoint graphs (a) at the time of recovery; (b) after recovery with Scheme A;

(c) after recovery with Scheme B. (Dashed lines represent the communication information

from virtual checkpoints. Black vertices indicate the current global recovery line before

recovery and gray vertices form the local recovery line at the time of recovery.)

a vertex CPjm is expecting an incoming edge from a non-existing vertex CPik, CPjm and

its associated incoming edges will be excluded from the existing CPG. By adding each new

vertex under this constraint, none of the new vertices can have edges pointing to any existing

vertex and, therefore, Rule 2 is enforced. The following important property is ensured by

Rule 2.

PROPERTY 1 Adding a new vertex v and its associated incoming edges to an existing

CPG can not change the relation between any pair of existing vertices.

11



Proof. The relation between any pair of existing vertices will be changed only if one

vertex is smaller than v and the other one is greater than v. However, Rule 2 guarantees

none of the existing vertices is greater than v. Therefore, the property holds. []

Let G t(G) denote the set of all future graphs obtainable by adding new vertices to a given

checkpoint graph G according to the above rules. Lemma 4 gives the relationship between

the antichains of G and those of its future graphs.

LEMMA 4 Given G = (V, E) and G' 6 _I(G),

(I) A(G) C_ A(G');

(2) A e .,4(G') and A C_ V ::_ A E .4(G);

(s) M(G) c_M(G');

(4) M E .A_(G') and M C_ V =:_ M E .M(G);

(5) M'(G) _ M'(G').

Proof. (1) and (2) follow immediately from Property 1. By Rule 1 and the discussion

after Lemma 2, the size of the maximum-sized antichains is always fixed and equal to the

number of processors. So (3) and (4) holds. In particular, M*(G) E M(G) C M(G') implies

M'(G) -'< M'(G'). []

Let ND(G) denote the set of non-discardable checkpoints of a given graph G. By defini-

tion, we have

ND(G) = {v : v e G and v e M*(G') for some a' C _](G)}. (i)

Our goal is to develop an algorithm to efficiently find the set ND(G).

12



V THE SET OF NON-DISCARDABLE

CHECKPOINTS

One feature of Scheme B is that the checkpoint graph is always growing until a rollback

recovery occurs, after which a new checkpoint graph starts. In this case, it is clear by the

definition in Eq. 1 that ND(G') A G C_ ND(G) for any G' _ !7l(G) because Gf(G') _C _I(G).

In other words, once a checkpoint is determined to be discardable, it will never become

non-discardable for any future graph. Note that a discardable checkpoint v can be removed

from the graph by the following procedure without affecting any recovery line in the future.

1. A new edge is generated for each pair of incoming and outgoing edges of v in order to

preserve the relations implied through v among the remaining vertices.

2. The source vertices of all the incoming edges of v have to be remembered. When an

outgoing edge of v is added in the future, it is replaced by the outgoing edges from

these source vertices.

However, since we are mainly concerned about checkpoint space reclamation, we will leave

all the vertices corresponding to discardable checkpoints in the graph for simplicity.

One special future graph of G, G, will play a very important role throughout this paper

and is constructed as follows:

1. adjoin N new vertices no, nl, ... , nN-_ to G;

2. an edge is added from the last vertex ei on each chain Ci to ni as shown in Fig. 5.

Let V,_ denote the set of all such ni's and V_ denote the set of ei's. We now prove the following

necessary and sufficient conditions for a checkpoint to be non-discardable.

13
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Figure 5: Construction of the future graph (_ by adding ni's to the checkpoint graph G.

THEOREM 1 Given a checkpoint graph G = (V, E) and v E G,

v E M'(G') for some G'= (V',E') E _I(G)

if and only if v E M'(G- W) for some W C V..

Proof. The /]" part is trivial because G - W E GI(G). We now prove the only if part.

If v E M'(G') for some G' E _I(G), let M'(G') = Mx U 342 such that M1 = M'(G') f'l V

and M2 = M'(G') \ M1 as shown in Fig. 6(a). In particular, v E Mx. Define p(u) = i if u

represents a checkpoint of processor pl and decompose the set Vn as V,_ = 15'1U B2 where

BI = {rip(,,):u E MI}

B2 = {np(,,): u E M2}.

We want to show that M, U B2 = M'(G- B_) (Fig. 6(b)).

First we prove M1 U B2 E .Ad(G - B1). Consider the graph G'. For every u E Me,

ep(_,) < u by Rule 1. According to Lemma 3, Z(%(=)) C_ I(u). Since u and all the vertices in

14
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Figure 6: Suppose (a) Mx U M2 forms the MM-chain of G', then (b) M1 U B2 forms the
MM-chain of G - Bx.

M1 belong to the same antichain, Mx N Z(u) = 0. It follows that M1 N Z(ep(,,)) = 0. Now

consider the graph G - Ba. The above equation still holds because of Property 1. By the

construction of G, Z(np(,,)) = Z(ep{,))U {np(,)} and therefore M_ nZ(np(,,)) = 0. Since Rule 2

implies Mx n.T'(np(_)) = 0, we have proved that every vertex np(,,) in B2 is incomparable with

every vertex in M1. Because M1 is an antichain by itself and all np(,,)'s in B2 are maximal,

M1 O B2 e M((_ - B1).

Next we prove M1 U B2 = M*(G - Bx) by contradiction. Because every vertex in B2 is

maximal on the chain it belongs to, /32 _C M*(G - Bx) by Lemma 2. Suppose MI tO B2 #

M*(G - Ba). There must exist M I = M*(G- B1) \ B2 such that M_ _ M[ and M_ # M_.

We then have .T'(M_) C Y(Ma) by Lemma 3. Recall M_ and M2 form an antichain in the

15



graph G', which implies Ms n .T'(M1) = O. Thus Ms n 9V(M_) = 0 and, because Rule 2

guarantees Ms Cl 2"(MI) = 0, M[ uM2 e 3,t(G'). The fact that M I UM2 is a greater M-chain

than M1 U Ms in G' contradicts M'(G') = M1 u Ms. Hence, M1 U/h = M'(_ - B1).

It immediately follows that if v E M'(G') for 8ome G' E GI(G), v E 341 C_ M'(d - B1)

for B1 C V,. []

The contribution of Theorem 1 is that it classifies the enormous number of possibilities

for any existing vertex to become a member of some MM-chain in the future into exponential

number of cases. If we apply the rollback propagation algorithm to each of the 2 g graphs

- W, W C_ V_, and take the union of all the resulting MM-chains, we obtain the set of non-

discardable checkpoints. However, this is an exponential algorithm and may be unacceptable

for applications with large number of processors. We will give another theorem in the next

section which can further reduce the number of cases.

VI THE MAXIMUM CHECKPOINT SPACE

RECLAMATION ALGORITHM

By applying Lemma 1, we will show that each of the 2 g MM-chains in Theorem 1 can

be "synthesized" by N MM-chains. An efficient algorithm is then developed for finding the

set of non-discardable checkpoints.

LEMMA 5 Given a poset P = (S,-_) and A, B C S,

min(A U B)= min(min(A) U B).

Proof.

a E A such that a '< a' and a ¢ a'. Since a, a' E A U B, a' ff rain(A U B). Therefore,

rain( A U B) = rain(rain(A) U min'( A) U B) = rain(rnin( A) U B).

16

Let rain'(A) = A \ rain(A). By definition, for each a' E rain'(A), there exists
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LEMMA 0 Given a poset P, M E.M(P) and M "< M_ e.M(P) fori e [0, k-1]forany

finite k. Define

then

(i)

(2)

• A M,=(...((MoAM,),',M_)... ^Mk-,,
_e[o,k-xl

M_ A Mi EA,4(P);
ietO,k-I]

A M_= mi,_( U M_).
ielo,k-1] ie[o,k-q

Proof. Both parts will be proved by induction on k.

(I) By Lemma 1, .hi(P) is a lattice and so Mo A Mx e ,4/[(P). Also, M -K Mo A M1 because

M _-_4Mo, M -4 M1 and Mo A M1 is the greatest lower bound of Mo and/141. We have shown

the case k = 2 is true. Assume it is true for k = n - 1, i.e.

Again, by Lemma 1,

M-4 A M_ E M(P). (2)
ieIO,n-2]

ie[0,n-l]

Eq. 2 and M -4 Mn-1 implies

A Mi=( A Mi)AMn_xE.M(P).

M-4 A M,.

Therefore, it is also true for k = n and so we have (1).

(2) The case k = 2 is true by Lemma 1. Assume it is true for k = n - 1, i.e.

A M_=min( U M_).
;_[o,,,-2] i_[o,,,-21

.(3)

17



Applying part (1), Eq. 3 and Lemma 1, we have

A M,=( h
ie[o,_-a] ie[o,_-2]

Lemma 5 further gives that

rain(rain( S Mi) u M,,_,) = rain(
ie[o,_-2l

Therefore, by induction, part (2) is true.

THEOREM 2 For every W C_ V_,

Mi) A M,-1 = rain(rain( U Mi) u M,_I).
ie[o,,,-2l

U MiuM,.,-x)=min( U M_).
ie[o,n-2] ie[o,n-l]

Proof. If there are k vertices in the set W, without loss of generality, we may assume

{n,: n, e W} = {zj: j e [0, k- 1]}.

Since G- zj e GI((_ - W), M°(G - W) _ M'(G- zj) for all j E [0, k- 1] by Lemma 4.

Now consider the graph G. G E gl(G- zj) implies that M*(G- zj) E 3,t(G) for

j E [0, k - 11. Similarly, M'((_- W) E 2t4((_). By Lemma 6,

M'(G- W) -< /k M'(G- zj) = rain( U M'(G- zj)) E M(G). (4)
jE[0,k-1] jE[O,k-1]

Moreover, for every j e [0, k - 1], there exists u E M'(G - zj) with p(u) = p(zj) such that

u < zj. Sinceu e Uj_[0,k-qM'(a- z_), zj ¢ min(Uj_[o.__,lM'(0- z_)). Weha_e, by

Lemma 4, min(Uje[o,k_l]M'(G- zj)) e M(G- W) and

Together with Eq. 4, we have proved

M'(G- zj)) -< M'(G- W).

M'(G- W) = rnin( U M*(G- zj)) = min( U M'(G- ni)). []
d_[o,k-1] n_w

18
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M'(G- W) = rain( Y M'(G - ni)).
niEW

they are zo, zl, ..., Zk-1, i.e.



In particular, the current global recoveryline, M'(G), can be obtained by letting W = V_,

M'(a) = rain( U
iE[0,N-1]

COROLLARY I Given a checkpoint graph G = (V, E),

ND(G) = U M*(G - hi) n V
_e[o,N-q

Proof. For any v e U_E{0,N-1] M'(G - hi) n V, v e M'(G - n_) for some i e [0, N - 1].

Since G- ni E _I(G), v E No(G) by definition. Thus UI_I0,N-1}M*(G- ni)M V c_ ND(G).

Conversely, for any v E ND(G), v E V and v E M'(G - W) for some W C V_ by

Theorem 1. Theorem 2 further gives that

v E min( U M'(G- nl)) C U M'(G- n,) C U M'(G- n,).
ni E W ni EW iE[0,N- 1]

Therefore, ND(G) C U;e[o,N-q M'(G - hi) M V and so we have

ND(G) = U M'(G - n_) M V. []

ie[0,g-x]

The above corollary provides the basis of a good algorithm for finding ND(G). We now

present the Maximum Checkpoint Space Reclamation (MCSR) algorithm in Fig. 7. The

algorithm is of complexity O(N[EI) , where IEI is the total number of edges in the checkpoint

graph.

Fig 8 shows the checkpoint graph corresponding to the initial part of execution of an

N-Queen program written in Chafe Kernel language [19] which has been developed as a

medium-grain, message-driven and machine-independent parallel language at the University

of Illinois. Some edges that do not affect the result of applying the MCSR algorithm are

19



/* N is the number of processors */

/* G and ni are as defined in the beginning of Section V */

for eachiE [0, N-l] {
apply the rollback propagation algorithm on the checkpoint graph G - ni to

find the recovery line;

add to the set ND(G) the checkpoints in G and on the recovery line;

}
all the checkpoints not in ND(G) can be reclaimed.

Figure 7: The Maximum Checkpoint Space Reclamation Algorithm

removed in order to get a clear picture. Denote the set of non-discardable vertices contributed

by M'(G - ni) as Nol, we have

NDo = {a}, ND1 = {b}, ND2 = {c},

ND3 -" NO4 -" NDS = {d, e, f, g, h, i}.

showed as the shaded vertices in Fig. 8. Traditional checkpoint space reclamation algorithms

can not reclaim any of the checkpoints due to the domino effect. It is interesting that the

MCSR algorithm determines that all non-shaded checkpoints can be reclaimed.

VII THE MAXIMUM NUMBER OF

NON-DISCARDABLE CHECKPOINTS

Traditionally, the checkpoint space reclamation procedure is only performed for the set

of checkpoints older than the current global recovery line. Since it is possible for the domino

effect to persist during the program execution, a common perception is that all checkpoints

20



a

Po

e b

Pl

f. c
P2

P3

P4

P5

Figure 8: Checkpoint graph corresponding to part of the execution of an N-Queen program

may have to be kept and the space overhead may be constantly growing as a program

proceeds. In a sense, this is a more serious disadvantage than the slower recovery due to the

domino effect because it results in unpredictable space overhead during normal execution.

Corollary 1 not only identifies the minimum set of non-discardable checkpoints but also places

an upper bound N 2 on the number of non-discardable checkpoints for a general checkpoint

graph because each M*(G - hi), i E [0, N - 1], consists of N checkpoints. A smaller upper

bound obviously exists based on the following observation:

1. M*(G - nl) may contain vertices from ths set V_, but we are only concerned about

vertices in the existing graph G;

2. M°(G - nl)'s may not be mutually disjoint;

3. if the last vertex, ei, on chain Ci is maximal, M'(G - hi) will contribute only a single

vertex to the set ND(G), i.e. ei itself.

The following lemma addresses the implicit relations among M*(G - ni)'s.
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LEMMA 7 Let rnij denote the vertex in M'(G-ni) from processor pj. For i,j E [0, N- 1]

and i _ j, if mq _ nj and mji _ ni, then M'(G- ni) = M'(G- nj).

Proof. mij _ nj implies M'(G-ni) C G-ni-nj.

M(G- n,- nj) C_ M(G - nj) and so

M'(G- ni) _ M'(G- nj).

Similarly, mji¢ ni leads to

M'(G - nj) "< M'(G- n,).

By Lemma 4, M'(G - hi) E

Since Ad(G - ni - nj) forms a poset (Lemma 1), we have

M'(G - hi) = M'(G - nj). []

THEOREM 3 For any checkpoint graph G = (V, E),

N(N + 1)
tNo(a)l <

2

Proof. By Corollary 1, we only have to consider the N 2 vertices mij, i,j E [0, N - 1].

For each i E [0, N - 1], rail E V and contributes one vertex to ND(G). Since all the m_i's

come from different processors, No now consists of N vertices. For the remaining N 2 - N

vertices with i _ j, we consider each pair m 0 and mj_ at a time and there are (N 2 - N)/2

such pairs. We distinguish three cases:

Case 1: m O-nj andmji=ni. Bothm 0 and rnj_ do not belong toND(G).

Case 2: rnij = nj and mji _ nl, or mij _ nj and rnji = n_. This pair will possibly add one

new vertex to ND(G).

Case 3: mij _ nj and mji _ hi. It follows that M*(G-ni) = M*(G-nj) by Lemma7,

and so mq = mjj and mji = rnii. Since mjj and mii are already in ND(G), this case

does not increase the size of ND(G).
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Therefore, each of the (N 2- N)/2 pairs can contribute at most one new vertex to ND (G).

We then have

N 2 - N N(N + 1) []
[ND(G)[ < N + 2 2

One may argue that the upper bound derived in Theorem 3 is still of the order N 2.

We will next show that N(N + 1)/2 is in fact the lowest upper bound, i.e., the maximum,

because for any N we can construct a checkpoint graph, G_v, as shown in Fig. 9 to achieve

this upper bound. By applying the MCSR algorithm in Fig. 7, it is not hard to see that all

the N(N + 1)/2 vertices in Fig. 9 are non-discardable.

P0

p/

P2

Figure 9: GTv: The checkpoint graph with N(N + 1)/2 non-discardable checkpoints

When a checkpoint graph is given, we can further reduce the maximum by counting the

number of maximal vertices, L, in the set V_ (as shown in Fig. 5). Recall that if ei is maximal,

mii = ei and mij -----r_j for j -7?:i. Therefore, in the discussion for each pair of mij and rn,ji in

the proof of Theorem 3, the case when both ei and ej are maximal corresponds to Case 1.
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The maximum then becomes

In particular when L = N, IND(G)[ = N, which is corresponding to the case of coordinated

checkpointing.

We would like to point out that the MCSR algorithm can be further improved by applying

Lemma 7. Inside the loop in Fig. 7, suppose we have found the recovery line M'(G - hi).

Define the index set F as

r={j:mij¢n i, je[0, N-1landj >i}.

Then for each later loop index j E F, the rollback propagation algorithm can be aborted

when any checkpoint from processor pi is marked. Because this would mean mji y_ ni and

M'(G- nj) is exactly the same as M'(G- n,).

VIII RECOVERY USING VIRTUAL

CHECKPOINTS

In this section, we want to show that our results in previous sections can also be applied

to Scheme A, i.e., recovery using virtual checkpoints. When a processor Pi detects an error

and decides to rollback, all the computation after its latest checkpoint are assumed invalid.

However, for each of the non-faulty processors, the state residing in the volatile storage is still

valid and can serve as a new checkpoint to advance the recovery line. Since the checkpoints

belonging to the current global recovery line will still remain on the stable storage, the virtual

checkpoints can be discarded after the recovery and disappear from the checkpoint graph.
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The effect of performing such recovery on the checkpoint graph is described as follows. The

existing checkpoint graph G = (V, E) is augmented by the set of virtual checkpoints at the

time of recovery and becomes graph G'. M'(G') is then obtained by the rollback propagation

algorithm. Processes roll back according to M*(G') and the vertices belonging to the set

._(M'(G')) \ M'(G') are deleted from G', together with all the associated edges. Finally, all

the vertices representing the virtual checkpoints are deleted.

O.ur approach to solving this more general problem when the checkpoint graph is not

always growing is described as follows. First, we apply the results from previous sections

to the checkpoint graphs before the first rollback. Since G' e G](G), M*(G') will not

contain any discardable checkpoints of G. Next, we again apply previous results to the

checkpoint graphs after the first rollback and before the second rollback to determine the set

of non-discardable checkpoints. If we can show that the rollback procedure does not make

any discardable checkpoint become non-discardable, i.e., needed for any possible second

rollback, the MCSR algorithm is then valid for Scheme A as well as for Scheme B because

once a checkpoint is determined to be discardable it will remain discardable no matter how

many times rollback recovery occurs in the future. Note that if the set of deleted vertices can

be arbitrary, the above statement may not be true. For example, for the checkpoint graph

G shown in Fig. 10(a), vertex CP12 is found to be discardable by the MCSR algorithm.

However, in the graph G - CPo2 shown in Fig. 10(b), CP12 becomes non-discardable.

The proof of Theorem 1 characterizes, as a byproduct, the possible sets of deleted vertices

due to rollback. That is, for any G' E GI(G), M*(G') M V C M'(G - T) where

T = {n,(u) : u E M'(G') M V}.

Define a strict filter corresponding to such T as

 8(T) = T)) \ T)

(5)
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Figure 10: Discardable checkpoint CP12 becomes non-discardable after the removal of check-

point CPo_. (Shaded vertices are non-discardable according to the MCSR algorithm.)

and denote

G(T) = G- pr,(T), (6)

it suffices to prove that ND(G(T)) C No(G). Parallel to the definitions of ei, n;, V_ and

for the graph G, we define e_, n_, V" and G(T) for the graph G(T). Clearly, for each

i E [0, N- 1] and ni _ T, e_ = el and n_ = hi. Also define

T' = {n_ : ni E T}.

LEMMA 8 For every W C V_ \ T,

(_-(TUW) E GI(G(T)-(T'UW)).

Proof. Clearly, by definition,

(G- T)- _,(T) = G(T) - T'.

Since V,_ \ T C V_', W C V,,' and so (G-(TUW))-_,(T) = G(T)-(T'UW). Now we have

to show all the vertices in _,(T) and their associated edges can be added to G(T) - (T'U W),
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following Rule 1 and 2, to obtain G-(TUW). Rule 1 is obviously satisfied. By always adding

the smaller vertices first, Rule 2 is enforced among the vertices in _(T) during the processor.

Suppose Rule 2 is violated when v E .7:',(T) is added, i.e. there exists u E G(T) - (T' U W)

such that an edge is drawn from v to u. Clearly, u tig V_' \ (T' U W). If u E G(T), v < u

and v • _,(T) implies u • .%-,(T) by the definition of .Tr,(T). This contradicts the fact that

G(T) fq .T',(T) = 0. Therefore, Rule 2 is also satisfied. []

THEOREM 4 Given a checkpoint graph G = (V, E), for every G' • _](G),

ND(G(T)) C_ No(G)

where T and G(T) are as defined in Eqs. 5 and 6.

Proof. If v • ND(G(T)), v • M'(G'(T)) for some G'(T) • _I(G(T)). Denote G(T) =

(V(T),E(T)) and G'(T) = (V'(T),E_(T)). Let M*(G'(T)) = M1 U M2 where M1 =

M*(G'(T)) N V(T) and M2 = M'(G'(T)) \ M1. Clearly, v • il. Also define

!

M3 = {%(_,) : u • M2 and np(_,) • T }.

Decompose V,_ as V_ = B_ U B2 U T where B_ = {n,(_) : u E M1} \ T and B2 = {np(_,) : u E

M2} \ T. Fig. 11 illustrates the above notation. We want to prove that

M_ U Ma U B2 = M'(G - (TU Bx)).

First we show Mx U Ms U B2 E .M(0 - (T U B1)). Recall that M3 U B2 C_ M*(G - T)

and so M3OB2 E A(G-T). Since G-T • _I(G(T)- T I) by the above lemma and

(M3UB2)M_,(T) = 0, we have MaOB2 • A(G(T)-T') by Lemma4. By the same argument,

M3 U B2 • A(G(T)- (T'U Bx)). Following the proof of Theorem 1, we have M_ MZ(w) = 0

for all w • M3 U B2. Since all the vertices in M3 U B2 are maximal in G(T) - (T t U BI)
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(Fig. 11(b)), M1 n _'(M3 U B2) = 0 and so M1 U M3 U B2 E M (G(T) - (T' U B_ )). It follows

that M1 U M3 U B2 E M(G - (T U B_)) again by applying Lemmas 8 and 4.

Now suppose M1uM3UB2 _ M*(G-(TUB1)). Since G-T E _/(G-(TUB1)), Lemma 4

gives M'(G- (T U B1)) _ M'(G- T). By Lemma 2, the facts that M3U B2 C_ M*(G- T)

and M1 U Mz U B2 E M(G - (T U B1)) implies M3 U B2 C_ M'(G - (T U B1)). Therefore,

there must exists (Fig. ll(c))

M_ = M'(G- (TU B_)) \ (M3 U B2)

such that MI _ M_ and MI # M_. We now have .T'(M_) C_ _'(M_). Together with M2 M

.T(M1) = 0, we get Ms M .T(M_) = 0 and so M_ U Ms E .M(Gr(T)). This is a contradiction

to M*(G'(T)) = MI UM2 because M_ UM2 _-<M_ UM2 and M_ UM2 _ M_ UM2. Therefore,

we must have M_ U M3U B2 = M'(G - (T U B1)).

Finally,

v E M_ C M*(G- (TU B_)) _C ND(G)

and so ND(G(T)) C_ ND(G).
[]

IX CONCLUSIONS

The problem of finding recovery lines for message-passing systems using independent

checkpointing is formulated as determining the maximum maximum-sized antichains of par-

tially ordered sets. We present a method for predicting the possibility for a checkpoint to

become a member of some recovery line in the future, and show that some of the checkpoints

will never be needed for recovery so their space can be reclaimed. Based on the algo-

rithm for finding the recovery lines, a maximum checkpoint space reclamation algorithm,
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with complexity linear in the number of processors N and linear in the number of edges in

the checkpoint graph, is developed for determining the set of non-discardable checkpoints.

The maximum, N(N + 1)/2, of the number of non-discardable checkpoints for an arbitrary

checkpoint graph is also derived to show that the space overhead for maintaining multiple

checkpoints is bounded even when the domino effect persists during program execution.
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